Sequestration and Activation:

From Bio-inspired Weak Interactions to SO_{2} Coupled Electron Transfer

Archana Yadav, Neha Kumari and Shruthi Dinesh

Department of Chemistry, Indian Institute of Technology Kanpur, INDIA Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, INDIA

Lone Pair $\cdots \pi$ Interactions in Nature and in Lab

 (b)
 C-turn of the RNA pseudo-knot in Potato Leaf Roll Virus
 $\mathrm{d}\left(\mathrm{O}_{\mathrm{W}} \cdots\right.$ centroid $\left._{\mathrm{A} 20}\right)=2.92 \AA$

Strong Enough to Capture/Weak Enough to Loose

Chem. Commun. 2022, 58, 11815-11818.

Capture of SO_{2} and Halocarbons

Organic Hydride Donors in $\mathrm{SO}_{2} \mathbf{A c t i v a t i o n ~}^{\text {Act }}$

ACS Sus. Chem. Eng. 2016, 4, 6517-6523.
ACS Sus. Chem. Eng. 2017, 5, 6322-6328.

Greener Metal Hydrides in $\mathrm{CO}_{2}-2$ and $\mathrm{SO}_{2} \underline{A}^{\text {Activation }}$

Green Chem. 2019, 21, 2752-2758.

Summary - Bioinspired weak interactions are useful in capture of SO_{2}. - Combining triazine backbone with koneramine complexes paved the way to catalytically activate SO_{2}. - Simple organic hydride were used in the sustainable stoichiometric activation. - Air-stable metal hydrides that were synthesised in solvent free reactions activate many small molecules including CO_{2} and SO_{2}. Acknowledgement Sakthi Raje, Sonam Mehrotra, Manoj Chahal and Gopichand Kotana are acknowledged for their contributions. SERB-DST, BRNS and MoES, India sponsored the research.

